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Abstract 
Diabetic peripheral neuropathy (DPN) is one of the most common and debilitating 

complications of diabetes mellitus. Early, subclinical stages of DPN are often 

asymptomatic and remain undetected until significant nerve damage occurs, limiting 

treatment options. Artificial intelligence (AI) has emerged as a promising tool to enhance 

early detection by identifying subtle patterns in electrophysiological, imaging, or sensor-

based data that may not be recognized by conventional diagnostic methods. However, the 

current landscape of AI applications in subclinical DPN remains unclear. The aim of this 

study was to map and synthesize the existing literature on the use of AI-based methods 

for the early detection of subclinical DPN. A comprehensive search of PubMed, Scopus, 

Web of Science, and Google Scholar was conducted up to August 25, 2025. Eligible studies 

included those applying AI or machine learning techniques to identify or predict 

subclinical DPN in patients with type 1 or type 2 diabetes. Non-English articles, studies 

without AI implementation, and reviews were excluded. Data were charted on study 

characteristics, AI methodology, dataset type, and reported outcomes. Preliminary 

evidence suggests that AI has been applied across multiple modalities, including nerve 

conduction studies, corneal confocal microscopy, wearable sensor data, and 

electrophysiological signals. Techniques ranged from traditional machine learning models 

such as support vector machines and random forests to deep learning architectures 

including convolutional neural networks. While several studies reported high sensitivity 

and accuracy for early detection, most were limited by small sample sizes, lack of external 

validation, and heterogeneous definitions of “subclinical” DPN. In conclusion, AI-based 

approaches demonstrate substantial potential for the early identification of subclinical 

DPN, which could enable earlier interventions and improve patient outcomes. 

Nonetheless, the field is still in its early stages, and robust multicenter datasets, 

standardized definitions, and explainable AI models are required to facilitate clinical 

adoption. Future research should focus on validation in diverse populations and 

integration into routine diabetic care pathways. 

Keywords: Artificial intelligence, early detection, diabetic peripheral neuropathy, non-

communicable diseases, machine learning 

Introduction 

Diabetes mellitus is one of the most pressing public health challenges of the 21st century, with 

an estimated global prevalence exceeding 500 million adults in 2021 and projections indicating 

that this number could rise to 783 million by 2045 [1]. In addition to hyperglycemia and metabolic 

mailto:roynofri28@gmail.com
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disturbances, diabetes is associated with a range of chronic microvascular and macrovascular 

complications that significantly impair quality of life and increase healthcare costs [2]. Among 

these complications, diabetic peripheral neuropathy (DPN) is particularly concerning, as it affects 

up to half of patients with longstanding diabetes and is a major contributor to disability, 

morbidity, and premature mortality. DPN can present with neuropathic pain, sensory deficits, 

gait disturbances, and a heightened risk of foot ulceration leading to lower-limb amputation. The 

socioeconomic impact of DPN is profound, placing strain not only on healthcare systems but also 

on patients’ functional independence and mental health [3].  

The development of DPN is a progressive process that begins with subtle alterations in nerve 

function, often referred to as subclinical DPN, long before overt symptoms emerge. During this 

stage, patients may have no complaints, yet pathological changes such as axonal degeneration, 

demyelination, and microvascular compromise are already underway [4]. Once clinical 

neuropathy is established, therapeutic options are largely palliative, as neuronal damage is often 

irreversible. Consequently, early identification of subclinical DPN is crucial for timely 

interventions that may halt or slow progression, such as optimization of glycemic control, lifestyle 

modification, and emerging neuroprotective strategies. Unfortunately, conventional diagnostic 

modalities are limited in this regard. Bedside clinical examination and sensory testing are 

subjective and often lack reproducibility, while standard nerve conduction studies, though 

objective, are relatively insensitive to the earliest neuropathic changes and may miss subtle 

functional impairment. These limitations underscore the urgent need for novel, sensitive, and 

accessible diagnostic tools capable of detecting subclinical neuropathy before irreversible damage 

occurs [5]. 

In recent years, artificial intelligence (AI) has emerged as a disruptive innovation in 

medicine, offering unprecedented opportunities to enhance diagnostic accuracy and efficiency by 

uncovering clinically meaningful patterns within high-dimensional data. Through machine 

learning and deep learning algorithms, AI-driven models have matched or exceeded specialist 

performance in multiple clinical domains, including automated detection of diabetic retinopathy 

from fundus images, arrhythmia prediction from electrocardiograms, dermatological lesion 

classification, and oncologic decision support [6]. Further, AI has demonstrated robust utility 

across diabetes-related complications, enabling accurate retinal screening in resource-limited 

settings [7], effective identification of cardiac autonomic neuropathy using advanced ECG-based 

learning strategies [8], and reliable prediction of diabetic foot and ulcer risk through integrative 

predictive models [9]. In the context of neuropathy, AI offers a distinct advantage by integrating 

heterogeneous inputs from nerve conduction studies, corneal confocal microscopy, skin biopsies, 

quantitative sensory testing, and wearable-derived physiological signals [10]. 

Although the application of AI in diabetes-related complications has gained momentum, 

research focusing specifically on subclinical DPN remains fragmented. Most available studies are 

limited to small cohorts, employ heterogeneous methodologies, and are often restricted to proof-

of-concept or pilot analyses. To date, there has been no comprehensive scoping review that 

systematically synthesizes and maps the evidence on AI approaches for the early detection of 

subclinical DPN. Such a review is essential not only to summarize what is currently known but 

also to highlight methodological strengths, identify recurring limitations, and define areas for 

future research. Addressing this gap is particularly important in light of the growing global 

diabetes burden and the unmet need for early detection tools. Therefore, the aim of this study 

was to comprehensively chart the existing literature on the application of AI techniques for early 

detection of subclinical DPN, thereby providing a foundation for further research, clinical 

translation, and ultimately improved patient outcomes. 

Methods 
This review was conducted to synthesize and discuss the existing literature on the use of AI for 

the early detection of subclinical DPN.  Subclinical DPN was defined as early peripheral nerve 

dysfunction in individuals with diabetes mellitus without overt neuropathic symptoms, identified 

using objective measures. These included abnormalities detected through nerve conduction 

studies, quantitative sensory testing, imaging-based nerve assessments, wearable sensor outputs, 
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or validated biochemical or clinical markers, as defined by the original studies. No single 

diagnostic criterion was imposed. 

A literature search was performed in PubMed, Scopus, Web of Science, and Epistemonikos 

to identify relevant studies published between July 28 and August 25, 2025. The search strategy 

combined controlled vocabulary and free-text keywords related to diabetes, neuropathy, and AI. 

The main search terms included: “artificial intelligence” OR “machine learning” OR “deep 

learning” AND “diabetic neuropathy” OR “peripheral neuropathy” OR “subclinical diabetic 

neuropathy” AND “early detection” OR “screening” OR “prediction.” The search syntax was 

adapted for each database. 

Articles were included if they were published in English and examined AI- or machine 

learning–based approaches relevant to early or subclinical DPN in individuals with type 1 or type 

2 diabetes mellitus. Eligible studies used clinical, electrophysiological, imaging, wearable, or 

biochemical data for model development or validation. Reviews, editorials, case reports, and non-

English publications were excluded from formal evidence synthesis but were used as 

complementary sources to contextualize findings. The review was not restricted by AI model type, 

algorithm architecture, data modality, healthcare setting, geographic region, or study design, 

provided that the study evaluated AI-based approaches with potential relevance to early 

neuropathy detection. Internal and external validation strategies were considered during 

interpretation but were not applied as exclusion criteria. 

Importantly, because relatively few studies explicitly enrolled cohorts labeled as having 

subclinical DPN, this review deliberately extrapolated findings from studies conducted in 

clinically diagnosed DPN populations when their input features, analytical targets, or biological 

signals were plausibly relevant to earlier disease stages. Such extrapolation was based on the 

rationale that many AI models leverage markers, such as small-fiber structural changes, 

microvascular dysfunction, metabolic burden, or functional gait alterations, that are known to 

precede overt neuropathic symptoms. Studies were therefore interpreted with explicit distinction 

between validated diagnostic performance and potential applicability to subclinical DPN, and no 

model was assumed to be directly transferable without further validation. 

Study selection was based on relevance to the review objective, with titles, abstracts, and full 

texts assessed to identify studies that contributed meaningfully to understanding AI-based 

approaches for early DPN detection. The included literature was synthesized narratively, with 

emphasis on data sources, analytical methods, diagnostic targets, and potential clinical 

applicability. Two reviewers independently performed a two-stage screening process. In the first 

stage, titles and abstracts were screened for relevance. In the second stage, the full text of 

potentially eligible studies was reviewed against the inclusion and exclusion criteria. 

Disagreements were resolved through discussion or consultation with a third reviewer. The study 

selection process and criteria are presented in Table 1. 

Pathophysiology of subclinical DPN 
DPN is the most prevalent form of diabetic neuropathy and classically follows a length-dependent 

pattern, initially involving the distal toes and feet before progressing proximally along the lower 

limbs [11]. Importantly, DPN does not emerge abruptly as a symptomatic disorder; rather, it 

evolves through a prolonged subclinical phase characterized by early neural dysfunction in the 

absence of overt sensory or motor complaints. During this stage, injury preferentially affects small 

unmyelinated C fibers and thinly myelinated Aδ fibers, which are particularly vulnerable to 

metabolic and microvascular stress due to their high energy demand and limited regenerative 

capacity. As a result, substantial neural injury may accumulate before clinical recognition, 

rendering this phase frequently underdiagnosed in routine practice. 

Accumulating electrophysiological and quantitative sensory testing data indicate that 

subclinical DPN is common. Nearly half of asymptomatic individuals with type 2 diabetes 

demonstrate abnormalities in nerve conduction or small-fiber function, despite lacking classical 

neuropathic symptoms [12]. These findings underscore that normal neurological examination or 

symptom-based screening does not reliably exclude early nerve injury. Instead, functional 

impairments such as reduced conduction velocity, altered thermal perception, or decreased 
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intraepidermal nerve fiber density may already be present, reflecting early axonal and Schwann 

cell dysfunction rather than irreversible structural loss. 

Several clinical and biochemical factors have been consistently associated with this early 

stage of nerve damage, including longer diabetes duration, reduced fasting C-peptide levels, and 

the presence of albuminuria [12-14]. Collectively, these markers capture converging 

pathophysiological pathways central to DPN development, namely chronic metabolic stress, 

microvascular dysfunction, low-grade inflammation, and impaired neurotrophic support [15-17]. 

Prolonged diabetes duration reflects cumulative exposure to hyperglycemia-driven mechanisms 

such as mitochondrial oxidative stress, activation of the polyol and hexosamine pathways, and 

accumulation of advanced glycation end-products, all of which disrupt axonal transport and ion 

channel function prior to overt axonal degeneration [16,18].  

Reduced C-peptide levels may further accelerate subclinical neuropathy by removing its 

protective actions on peripheral nerves. Experimental and clinical evidence suggests that C-

peptide supports endoneurial blood flow, preserves Na⁺/K⁺-ATPase activity, stabilizes neuronal 

membranes, and attenuates inflammatory signaling. Deficiency in this peptide therefore 

predisposes nerves to ischemic vulnerability and metabolic injury even in the absence of marked 

hyperglycemia [19,20]. In parallel, albuminuria serves as a systemic marker of endothelial 

dysfunction and microvascular injury, reinforcing the concept that early DPN is part of a broader 

microangiopathic process linking renal, retinal, and neural tissues. Without timely management, 

these subclinical abnormalities gradually extend from small sensory fibers to larger sensory and 

motor fibers [18,21]. Therefore, early identification is critical as it provides a window for 

intervention before permanent axonal loss occurs, highlighting the need for reliable screening 

methods of subclinical DPN. 

Conventional diagnostic approaches and their limitations 
Several diagnostic modalities are currently available for the detection of subclinical DPN, where 

their summaries are presented in Table 2. Conventional clinical examinations, such as 

monofilament testing and vibration perception, are widely used but have limited sensitivity for 

early or asymptomatic disease [22,23]. Nerve conduction studies remain the reference standard 

for diagnosing large-fiber neuropathy, with high specificity. However, they have limited 

sensitivity for early small-fiber involvement and require specialized equipment and trained 

personnel [22,23]. The assessment is objective and is based on parameters such as nerve 

conduction velocity, distal latency, and signal amplitude [22]. However, their sensitivity in 

detecting subclinical DPN is limited, as early pathophysiological changes typically affect small 

fibers before large fibers become involved [5]. Skin biopsy with intraepidermal nerve fiber density 

assessment is considered the gold standard for small-fiber neuropathy and enables detection at 

subclinical stages [24,25]. Nonetheless, the invasive nature of skin biopsy contributes to its 

restricted routine use. Corneal confocal microscopy has emerged as a non-invasive imaging 

technique capable of detecting early small-fiber loss, though its implementation is constrained by 

equipment availability and technical expertise [26]. Collectively, these non–AI-assisted 

modalities form the current diagnostic landscape for subclinical DPN, but each presents trade-

offs between accuracy, accessibility, and scalability, underscoring persistent gaps in early 

detection [27]. Furthermore, those assessments are heavily dependent on patient responses and 

examiner technique which can introduces potential bias and further limits reliability [28]. 

The subclinical stage of DPN represents a critical window during which neural injury may 

still be reversible or its progression substantially attenuated. Evidence from the Diabetes Control 

and Complications Trial (DCCT) showed that early neuropathic changes are modifiable through 

metabolic intervention [29]. However, the ability to act within this window is constrained by the 

limitations of existing diagnostic modalities. Conventional clinical examinations lack sensitivity 

for early disease, while standard nerve conduction studies primarily capture large-fiber 

dysfunction and may fail to detect early or predominantly small-fiber involvement [27]. Even 

electrophysiological refinements designed to detect subtle distal conduction slowing are not 

routinely applied and require specialized expertise for interpretation.  
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Table 1. Search process and study selection criteria 

Items Specification 
Date of search July 28, 2025 until August 25, 2025 
Databases and other sources searched PubMed, Scopus, Web of Science, and Epistemonikos 
Search terms used  “artificial intelligence” OR “machine learning” OR “deep learning” AND “diabetic neuropathy” OR “peripheral neuropathy” OR “subclinical 

diabetic neuropathy” AND “early detection” OR “screening” OR “prediction” 
Inclusion and exclusion criteria  Articles were included if they were published in English and focused on AI- or machine learning (ML)-based approaches for detecting 

subclinical DPN among patients with diabetes mellitus (Type 1 or Type 2). Eligible studies encompassed the use of clinical, 
electrophysiological, imaging, wearable, or biochemical datasets for model development or validation. Reviews, editorials, case reports, and 
non-English publications were excluded. 

Selection process Two reviewers screened the search results independently through titles and abstracts to select the eligible ones  

Table 2. Non-artificial intelligence diagnostic modalities for detection of subclinical diabetic peripheral neuropathy 

Diagnostic modality Primary nerve fiber 
assessed 

Typical diagnostic 
performance* 

Skill/specialist requirement Strengths  Limitations 

Clinical examination 
(monofilament, tuning fork) 

Large fiber Low sensitivity for 
subclinical disease 

Primary care–level Simple, low cost, widely 
available 

Insensitive to early neuropathy; 
subjective; poor signal granularity 
for AI 

Nerve conduction study Large fiber Sensitivity 40–81%; 
specificity 90–95% 

Neurologist / trained 
technician 

Reference standard for 
large-fiber neuropathy 

Insensitive to early small-fiber 
damage; time-consuming; limited 
scalability 

Point-of-care nerve 
conduction study (NCS) (such 
as sural nerve devices) 

Large fiber Sensitivity 80–96%; 
specificity 80–97% 

Minimal training Rapid, standardized 
outputs; scalable 

Still misses pure small-fiber 
neuropathy; population-specific 
cutoffs 

Intraepidermal nerve fiber 
density (skin biopsy) 

Small fiber Sensitivity 78–88%; 
specificity 64–90% 

Specialist, pathology lab Gold standard for small-
fiber neuropathy 

Invasive; sampling variability; 
poor acceptability; limited 
repeatability 

Quantitative sensory testing 
(QST) 

Small±large fiber Highly variable (AUC: 
0.65–0.80) 

Trained operator + 
cooperative patient 

Non-invasive; detects 
functional impairment 

Psychophysical bias; attention-
dependent; noisy labels for AI 

Contact heat evoked 
potentials (CHEPs) 

Small fiber (Aδ, C) Sensitivity 80%; 
specificity 70% 

Neurophysiology expertise Objective cortical response; 
earlier than NCS 

Limited availability; complex 
acquisition; small datasets 

Corneal confocal microscopy Small fiber AUC 0.70–0.85 
(parameter-dependent) 

Ophthalmic imaging + 
software 

Non-invasive; detects early 
nerve loss; repeatable 

Equipment cost; normative 
variability; image quality 
dependence 

Sudomotor function testing 
(QSART) 

Small fiber (auto) Sensitivity 60%; 
specificity 100% 

Specialized lab Objective autonomic 
assessment 

Time-consuming; variable 
performance; limited adoption 

Electrochemical skin 
conductance  

Small fiber (auto) Moderate accuracy (AUC 
0.70–0.80) 

Minimal training Rapid; point-of-care 
friendly 

Influenced by hydration, skin 
condition; indirect nerve measure 

*Data are proximate from different studies 
Reference: [27]
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Current electrophysiological approaches tend to evaluate sensorimotor and autonomic 

dysfunction separately, despite DPN being a condition involving multiple neural domains, 

leading to incomplete characterization of early disease [30]. AI emerges as a promising approach 

to address these diagnostic gaps by leveraging data already generated from conventional 

diagnostic modalities. Using electrophysiological signals, imaging outputs, and functional test 

results obtained from nerve conduction studies, corneal confocal microscopy, quantitative 

sensory testing, and autonomic assessments, machine-learning algorithms can identify complex, 

multivariate patterns that are not readily apparent through conventional threshold-based 

interpretation [26,31]. 

AI approaches for early detection of subclinical DPN 
Detection of subclinical DPN through AI models, in general, integrates early risk factors, subtle 

neurophysiological abnormalities, and emerging functional changes that precede overt clinical 

symptoms [32,33].  The following sections explain how classical machine learning models 

leverage structured clinical and electrophysiological data, how deep learning approaches uncover 

latent structural and waveform-level signatures from imaging and signal-based modalities, and 

how wearable sensor–driven AI captures early functional impairments in real-world settings. The 

role of explainable AI in translating these complex models into clinically interpretable tools was 

further discussed. It is worth noting that most AI-based studies cited in the following sections 

were designed to identify established or clinically manifest DPN rather than subclinical disease. 

In this context, qualitative extrapolation was performed on the reported methodological 

approaches and analytical performance to assess the feasibility of applying these models to the 

identification of subclinical DPN. The summary of studies reporting AI- or machine learning-

based models, with feasible application to detect subclinical DPN is presented in Table 3. 

Machine learning methods 

Classical machine learning approaches, including logistic regression, random forests, support 

vector machines, gradient boosting, and XGBoost, have been widely applied in the detection of 

clinical DPN [2]. Features or variables incorporated in these models involved structured 

demographic, clinical, metabolic, and laboratory data for neuropathy-related prediction tasks 

[34-37]. Machine learning classification models typically use routinely available variables, 

including age, sex, diabetes duration, body mass index, HbA1c, lipid profiles, renal markers, and 

cardiovascular indicators; in some studies, electrophysiological or quantitative sensory testing 

results are also incorporated [34-37]. Logistic regression is often employed as a baseline due to 

its transparency and interpretability. Meanwhile, the performance often improved after 

implementing ensemble-based methods such as random forests and gradient boosting 

[34,36,37]. The ensemble-based methods are considered superior when handling nonlinear 

relationships and interactions among heterogeneous risk factors [38, 39]. As reported previously, 

Random Forest, XGBoost, and LightGBM classifiers could reach over 80% of accuracy when 

detecting prediabetes [40]. 

Across studies, age and diabetes duration consistently emerged as the most influential 

predictors, reflecting cumulative metabolic exposure and time-dependent neurodegenerative 

processes that are insufficiently represented by short-term biochemical indices alone [34-37]. 

Glycemic control, commonly measured by HbA1c, contributed to model performance but showed 

limited discriminative value when considered in isolation [41,42]. This is consistent with clinical 

observations that neuropathy may develop despite apparently adequate glycemic control in 

individuals with prolonged diabetes duration [43, 44]. In contrast, renal markers such as urine 

albumin-to-creatinine ratio and serum creatinine were repeatedly selected as strong predictors 

[45,46]. This is likely because they reflect shared microvascular and endothelial dysfunction 

underlying both diabetic nephropathy and peripheral neuropathy [47]. Patterns showed by the 

aforementioned studies suggests that systemic microvascular compromise may serve as a more 

sensitive early signal of neuropathic risk than glycemic metrics alone [48,49]. 
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Table 3. AI-based study and applicability for subclinical diabetic peripheral neuropathy 

Author, year (ref) AI method Input data Neuropathy stage studied Applicability for subclinical DPN 
Zhang et al., 2023 [35]  Random Forest (best); LR, 

SVM, GBDT, XGBoost 
PORH, LTH, TcPO₂ + clinical variables Clinical DPN Variables can be measured in 

subclinical stage 
Baskozos et al., 2022 [34] Random Forest (best); 

Adaptive Regression Splines; 
Naïve Bayes 

Clinical, metabolic, QoL, psychological, 
lifestyle variables 

Clinical DPN (painful vs painless) Multidimensional risk profiles in 
subclinical stage 

Jiang et al., 2024 [36] Random Forest (best); 
Logistic Regression + SHAP 

Clinical, laboratory, and TCM features Clinical DPN Early-risk profiling using routine 
clinical data 

Wu et al., 2024 [37] XGBoost (best); Random 
Forest; Logistic Regression + 
SHAP 

Demographic, clinical, and routine 
laboratory data 

Clinical DPN Shared risk factors measurable before 
overt neuropathy; based on routine 
labs 

Wu et al., 2024 [37] XGBoost (best); Random 
Forest; Logistic Regression + 
SHAP 

Demographic, clinical, and routine 
laboratory data 

Clinical DPN Shared risk factors measurable before 
overt neuropathy; based on routine 
labs 

Williams et al., 2020 
[50] 

CNN (U-Net; Liverpool Deep 
Learning Algorithm) 

Corneal confocal microscopy images Clinical DPN (Toronto criteria) Small-fibre pathology detectable before 
clinical symptoms 

Qiao et al., 2024 [51] U2Net (best); U-Net, U-
Net++, Deeplabv3+, SegNet 

Corneal confocal microscopy images Clinical DPN (Toronto criteria) Small-fiber changes occur early; 
imaging markers measurable before 
symptoms 

Sartore et al., 2025 [10] XGBoost-based risk 
prediction algorithm 
(MetaClinic) 

HbA1c, glucose, BP, lipids, creatinine, 
albuminuria 

Asymptomatic T2D; DPN 
assessed by biothesiometer 

Designed for pre-symptomatic risk 
stratification; supports early screening 
before clinical neuropathy 

AI: artificial intelligence; BMI: body mass index; BP: blood pressure; CNBD: corneal nerve branch density; CNFD: corneal nerve fiber density; CNFL: corneal nerve fiber length; CNN: 
convolutional neural network; DPN: diabetic peripheral neuropathy; EQ-5D: EuroQol five-dimension questionnaire; GBDT: gradient boosting decision tree; HbA1c: glycated 
hemoglobin; LR: logistic regression; LTH: local thermal hyperemia; PORH: post-occlusion reactive hyperemia; QoL: quality of life; SHAP: SHapley Additive exPlanations; SVM: support 
vector machine; T2D: type 2 diabetes; TcPO₂: transcutaneous oxygen pressure; TCM: traditional Chinese medicine; UACR: urine albumin-to-creatinine ratio; VPT: vibration perception 
threshold; XGBoost: extreme gradient boosting. 
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Several studies which used machine learning–based models also incorporated 

cardiovascular and vascular-related variables, including blood pressure parameters and carotid 

stenosis [10,47]. This suggests that macrovascular disease contributes to nerve ischemia and 

impaired axonal repair and is captured by these models [52,53]. A model developed from 

systematic review included hypertension, determined by blood pressure, could effectively 

stratified patients to develop DPN [53]. In addition, patient-reported outcomes—particularly 

reduced quality-of-life scores and psychological measures such as depression and anxiety—were 

frequently ranked among important features [34]. These variables may capture early functional, 

perceptual, and behavioral changes that precede formal neurological diagnosis and are not 

readily detected by objective testing. In terms of the methods applicability for subclinical DPN 

detection, these models are feasible primarily because of their reliance on routinely collected, 

non-invasive variables [34-37].  

Deep learning methods 

As limitations of traditional machine learning classifiers in capturing high-dimensional and 

spatially complex data became apparent, researchers increasingly shifted toward deep learning 

architectures [54]. AI studies employing deep learning architectures have primarily focused on 

imaging-based modalities [55,56]. Mostly, the images incorporated to the models are derived 

from high-frequency peripheral nerve ultrasound and corneal confocal microscopy [50, 51, 53]. 

These modalities are capable to capture structural correlates of neuropathy that are not accessible 

through routine clinical testing [50,51,53]. These modalities are particularly suited to early 

neuropathy assessment because they interrogate small-fiber integrity and nerve 

microarchitecture, which are affected earlier in the disease course than large-fiber conduction 

parameters [31]. Convolutional neural networks and advanced segmentation models consistently 

identified features such as nerve cross-sectional area, corneal nerve fiber length, density, 

branching complexity, and fractal metrics, reflecting axonal loss, impaired regeneration, and 

disruption of nerve network organization that may precede overt clinical symptoms  [50,51,53]. 

An intriguing instance, as reported by a study, is that reductions in corneal nerve fiber length and 

density capture diffuse axonal degeneration, whereas alterations in branching patterns and 

fractal measures reflect loss of network complexity and regenerative capacity [57].  

Further, deep learning and AI frameworks have also been applied to non-imaging data 

sources to support early neuropathy risk assessment. An integrated AI risk-prediction model 

evaluated asymptomatic individuals with type 2 diabetes using routinely available clinical and 

biochemical variables, with neuropathy status benchmarked against vibration perception 

threshold measured by biothesiometer [10]. This approach explicitly targets the pre-symptomatic 

phase of disease and shifts the role of AI from direct structural detection toward probabilistic risk 

stratification [58]. The prominence of variables such as age, disease duration, and metabolic 

burden in these models reinforces convergence between imaging-based and non-imaging AI 

approaches around shared pathophysiological drivers of early nerve injury [59,60]. The 

integrated risk-prediction systems enable scalable screening in asymptomatic populations [10]. 

However, most deep learning models have been trained and validated in cohorts with clinically 

manifest DPN, and their applicability to subclinical disease remains largely extrapolated.  

Challenges and gaps in the literature 
Unfortunately, the current evidence base for AI-assisted identification of subclinical DPN 

remains constrained by several methodological and translational challenges [55]. Most studies 

rely on small, single-center datasets without standardized acquisition protocols, limiting 

generalizability and increasing the risk of overfitting. The problem is particularly concerning for 

deep learning models that require large and diverse training data [61-63]. In addition, the absence 

of a universally accepted definition of subclinical DPN results in heterogeneous diagnostic 

thresholds, inclusion criteria, and outcome measures, complicating cross-study comparisons and 

precluding the establishment of reliable benchmarks. Model validation is frequently retrospective 

and confined to controlled research settings, raising concerns regarding robustness and 

performance in real-world clinical practice, where early or mild neuropathic changes are often 

underrepresented [64,65]. Data imbalance, in which early or subclinical DPN cases constitute a 



 Robbani et al. Narra Review 2025; 1 (3): e14 - http://doi.org/10.52225/narrarev.v1i3.14        

Page 9 of 13 

N
ar

ra
ti

v
e 

R
ev

ie
w

 

small minority relative to non-DPN samples, has been shown to reduce model sensitivity for 

minority outcomes. The application of data-balancing techniques, such as the Synthetic Minority 

Over-sampling Technique (SMOTE), has been associated with improved recall and F1-scores in 

imbalanced disease classification tasks [66]. In addition, limited model interpretability 

constrains clinician trust and clinical adoption, particularly in convolutional neural network–

based systems [42,55]. Finally, unresolved issues related to data governance and regulation. Their 

integration into existing care pathways underscore persistent gaps between technical feasibility 

and practical implementation [67]. 

Future directions 
Future research should prioritize the development of multicenter, standardized datasets that 

capture diverse patient populations and employ consistent diagnostic criteria for subclinical 

DPN. Such datasets would improve reproducibility, enable benchmarking of algorithms, and 

facilitate external validation. In parallel, explainable AI (XAI) techniques should be increasingly 

applied to enhance transparency, allowing clinicians to understand which features drive 

predictions and improving trust in automated systems [68,69]. Integration of AI with wearable 

technologies and mobile health applications also holds significant promise. Continuous 

monitoring of gait, plantar pressure, and other functional parameters could provide real-time 

insights into neuropathic changes, enabling proactive interventions [70]. In this context, 

wearable sensor–based point-of-care platforms can be used for such monitoring of early 

neuropathic changes outside traditional clinical settings [30,71]. Further, longitudinal prediction 

models should be developed to estimate individual risk trajectories over time, supporting 

personalized diabetes management. Unfortunately, most of the reports on real-time monitoring 

of DPN or other diabetic complications remain conceptual [72].  

Explainable AI (XAI) 

XAI techniques aim to address the lack of interpretability in complex models by making the 

decision-making process more transparent and understandable to clinicians [73]. Methods such 

as SHapley Additive exPlanations (SHAP), Local Interpretable Model-Agnostic Explanations 

(LIME), and saliency maps can be used to highlight which features such as HbA1c levels, nerve 

conduction parameters, or specific regions of an image can contribute most to the model’s 

predictions [56,74]. For example, in a deep learning model trained on corneal confocal 

microscopy (CCM) images, saliency maps can visually indicate the nerve fibers that drive the 

classification decision, thereby aligning AI outputs with clinical intuition. Similarly, in 

structured-data models, SHAP values can rank the most important predictors of subclinical 

neuropathy, helping clinicians validate whether the model is consistent with established risk 

factors. XAI not only improves clinician trust but also facilitates regulatory approval and ethical 

deployment in practice [73]. 

Wearable and sensor-based AI 

Wearable technologies and sensor-based AI approaches provide an innovative, non-invasive 

avenue for detecting subclinical DPN by continuously monitoring functional outcomes such as 

gait, balance, and plantar pressure distribution [30,71]. As suggested in non-diabetic contexts, 

devices like accelerometers, inertial measurement units (IMUs), and pressure-sensitive insoles 

can capture detailed spatiotemporal gait parameters and subtle deviations in walking patterns 

that may reflect early sensory or motor nerve dysfunction [75,76]. For example, patients with 

incipient neuropathy may demonstrate reduced stride variability, asymmetrical pressure 

distribution across the foot, or impaired postural stability, all of which can be quantified through 

wearable sensors [71]. Machine learning algorithms can be applied to these datasets to classify 

patients at risk of DPN, expected outperforming traditional screening tools due to their sensitivity 

to micro-level biomechanical changes. A key advantage of wearable-based models is their ability 

to provide continuous, real-world data that reflect daily activity rather than isolated clinical 

measurements [35]. To develop this emerging research area, the progress will depend on 

interdisciplinary collaboration among clinicians, engineers, data scientists, and behavioral 

researchers.  
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Conclusion 
Integration of AI is highly promising for the early identification of subclinical DPN, with the 

potential to stratify high-risk individuals before irreversible nerve damage occurs. Across diverse 

methodological approaches, existing studies report encouraging accuracy and sensitivity. 

However, the evidence base remains fragmented by small sample sizes, heterogeneous definitions 

of subclinical DPN, and limited validation in real-world settings. To enable meaningful clinical 

translation, future research should prioritize large, standardized, and multicenter datasets, the 

systematic incorporation of explainable AI frameworks, and rigorous prospective validation. If 

these challenges are addressed, the integration of AI-driven models into routine diabetes care 

may represent a transformative step toward earlier intervention and reduction of the long-term 

burden of neuropathic complications. 
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