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Abstract

Diabetic peripheral neuropathy (DPN) is one of the most common and debilitating
complications of diabetes mellitus. Early, subclinical stages of DPN are often
asymptomatic and remain undetected until significant nerve damage occurs, limiting
treatment options. Artificial intelligence (AI) has emerged as a promising tool to enhance
early detection by identifying subtle patterns in electrophysiological, imaging, or sensor-
based data that may not be recognized by conventional diagnostic methods. However, the
current landscape of AI applications in subclinical DPN remains unclear. The aim of this
study was to map and synthesize the existing literature on the use of Al-based methods
for the early detection of subclinical DPN. A comprehensive search of PubMed, Scopus,
Web of Science, and Google Scholar was conducted up to August 25, 2025. Eligible studies
included those applying AI or machine learning techniques to identify or predict
subclinical DPN in patients with type 1 or type 2 diabetes. Non-English articles, studies
without AI implementation, and reviews were excluded. Data were charted on study
characteristics, AI methodology, dataset type, and reported outcomes. Preliminary
evidence suggests that AI has been applied across multiple modalities, including nerve
conduction studies, corneal confocal microscopy, wearable sensor data, and
electrophysiological signals. Techniques ranged from traditional machine learning models
such as support vector machines and random forests to deep learning architectures
including convolutional neural networks. While several studies reported high sensitivity
and accuracy for early detection, most were limited by small sample sizes, lack of external
validation, and heterogeneous definitions of “subclinical” DPN. In conclusion, Al-based
approaches demonstrate substantial potential for the early identification of subclinical
DPN, which could enable earlier interventions and improve patient outcomes.
Nonetheless, the field is still in its early stages, and robust multicenter datasets,
standardized definitions, and explainable AI models are required to facilitate clinical
adoption. Future research should focus on validation in diverse populations and
integration into routine diabetic care pathways.

Keywords: Artificial intelligence, early detection, diabetic peripheral neuropathy, non-
communicable diseases, machine learning

Introduction

Diabetes mellitus is one of the most pressing public health challenges of the 21st century, with

an estimated global prevalence exceeding 500 million adults in 2021 and projections indicating
that this number could rise to 783 million by 2045 [1]. In addition to hyperglycemia and metabolic
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disturbances, diabetes is associated with a range of chronic microvascular and macrovascular
complications that significantly impair quality of life and increase healthcare costs [2]. Among
these complications, diabetic peripheral neuropathy (DPN) is particularly concerning, as it affects
up to half of patients with longstanding diabetes and is a major contributor to disability,
morbidity, and premature mortality. DPN can present with neuropathic pain, sensory deficits,
gait disturbances, and a heightened risk of foot ulceration leading to lower-limb amputation. The
socioeconomic impact of DPN is profound, placing strain not only on healthcare systems but also
on patients’ functional independence and mental health [3].

The development of DPN is a progressive process that begins with subtle alterations in nerve
function, often referred to as subclinical DPN, long before overt symptoms emerge. During this
stage, patients may have no complaints, yet pathological changes such as axonal degeneration,
demyelination, and microvascular compromise are already underway [4]. Once clinical
neuropathy is established, therapeutic options are largely palliative, as neuronal damage is often
irreversible. Consequently, early identification of subclinical DPN is crucial for timely
interventions that may halt or slow progression, such as optimization of glycemic control, lifestyle
modification, and emerging neuroprotective strategies. Unfortunately, conventional diagnostic
modalities are limited in this regard. Bedside clinical examination and sensory testing are
subjective and often lack reproducibility, while standard nerve conduction studies, though
objective, are relatively insensitive to the earliest neuropathic changes and may miss subtle
functional impairment. These limitations underscore the urgent need for novel, sensitive, and
accessible diagnostic tools capable of detecting subclinical neuropathy before irreversible damage
occurs [5].

In recent years, artificial intelligence (AI) has emerged as a disruptive innovation in
medicine, offering unprecedented opportunities to enhance diagnostic accuracy and efficiency by
uncovering clinically meaningful patterns within high-dimensional data. Through machine
learning and deep learning algorithms, AI-driven models have matched or exceeded specialist
performance in multiple clinical domains, including automated detection of diabetic retinopathy
from fundus images, arrhythmia prediction from electrocardiograms, dermatological lesion
classification, and oncologic decision support [6]. Further, ATl has demonstrated robust utility
across diabetes-related complications, enabling accurate retinal screening in resource-limited
settings [7], effective identification of cardiac autonomic neuropathy using advanced ECG-based
learning strategies [8], and reliable prediction of diabetic foot and ulcer risk through integrative
predictive models [9]. In the context of neuropathy, AT offers a distinct advantage by integrating
heterogeneous inputs from nerve conduction studies, corneal confocal microscopy, skin biopsies,
quantitative sensory testing, and wearable-derived physiological signals [10].

Although the application of Al in diabetes-related complications has gained momentum,
research focusing specifically on subclinical DPN remains fragmented. Most available studies are
limited to small cohorts, employ heterogeneous methodologies, and are often restricted to proof-
of-concept or pilot analyses. To date, there has been no comprehensive scoping review that
systematically synthesizes and maps the evidence on AI approaches for the early detection of
subclinical DPN. Such a review is essential not only to summarize what is currently known but
also to highlight methodological strengths, identify recurring limitations, and define areas for
future research. Addressing this gap is particularly important in light of the growing global
diabetes burden and the unmet need for early detection tools. Therefore, the aim of this study
was to comprehensively chart the existing literature on the application of AI techniques for early
detection of subclinical DPN, thereby providing a foundation for further research, clinical
translation, and ultimately improved patient outcomes.

Methods

This review was conducted to synthesize and discuss the existing literature on the use of Al for
the early detection of subclinical DPN. Subclinical DPN was defined as early peripheral nerve
dysfunction in individuals with diabetes mellitus without overt neuropathic symptoms, identified
using objective measures. These included abnormalities detected through nerve conduction
studies, quantitative sensory testing, imaging-based nerve assessments, wearable sensor outputs,
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or validated biochemical or clinical markers, as defined by the original studies. No single
diagnostic criterion was imposed.

A literature search was performed in PubMed, Scopus, Web of Science, and Epistemonikos
to identify relevant studies published between July 28 and August 25, 2025. The search strategy
combined controlled vocabulary and free-text keywords related to diabetes, neuropathy, and Al
The main search terms included: “artificial intelligence” OR “machine learning” OR “deep
learning” AND “diabetic neuropathy” OR “peripheral neuropathy” OR “subclinical diabetic
neuropathy” AND “early detection” OR “screening” OR “prediction.” The search syntax was
adapted for each database.

Articles were included if they were published in English and examined AI- or machine
learning—based approaches relevant to early or subclinical DPN in individuals with type 1 or type
2 diabetes mellitus. Eligible studies used clinical, electrophysiological, imaging, wearable, or
biochemical data for model development or validation. Reviews, editorials, case reports, and non-
English publications were excluded from formal evidence synthesis but were used as
complementary sources to contextualize findings. The review was not restricted by AI model type,
algorithm architecture, data modality, healthcare setting, geographic region, or study design,
provided that the study evaluated Al-based approaches with potential relevance to early
neuropathy detection. Internal and external validation strategies were considered during
interpretation but were not applied as exclusion criteria.

Importantly, because relatively few studies explicitly enrolled cohorts labeled as having
subclinical DPN, this review deliberately extrapolated findings from studies conducted in
clinically diagnosed DPN populations when their input features, analytical targets, or biological
signals were plausibly relevant to earlier disease stages. Such extrapolation was based on the
rationale that many AI models leverage markers, such as small-fiber structural changes,
microvascular dysfunction, metabolic burden, or functional gait alterations, that are known to
precede overt neuropathic symptoms. Studies were therefore interpreted with explicit distinction
between validated diagnostic performance and potential applicability to subclinical DPN, and no
model was assumed to be directly transferable without further validation.

Study selection was based on relevance to the review objective, with titles, abstracts, and full
texts assessed to identify studies that contributed meaningfully to understanding AI-based
approaches for early DPN detection. The included literature was synthesized narratively, with
emphasis on data sources, analytical methods, diagnostic targets, and potential clinical
applicability. Two reviewers independently performed a two-stage screening process. In the first
stage, titles and abstracts were screened for relevance. In the second stage, the full text of
potentially eligible studies was reviewed against the inclusion and exclusion criteria.
Disagreements were resolved through discussion or consultation with a third reviewer. The study
selection process and criteria are presented in Table 1.

Pathophysiology of subclinical DPN

DPN is the most prevalent form of diabetic neuropathy and classically follows a length-dependent
pattern, initially involving the distal toes and feet before progressing proximally along the lower
limbs [11]. Importantly, DPN does not emerge abruptly as a symptomatic disorder; rather, it
evolves through a prolonged subclinical phase characterized by early neural dysfunction in the
absence of overt sensory or motor complaints. During this stage, injury preferentially affects small
unmyelinated C fibers and thinly myelinated A8 fibers, which are particularly vulnerable to
metabolic and microvascular stress due to their high energy demand and limited regenerative
capacity. As a result, substantial neural injury may accumulate before clinical recognition,
rendering this phase frequently underdiagnosed in routine practice.

Accumulating electrophysiological and quantitative sensory testing data indicate that
subclinical DPN is common. Nearly half of asymptomatic individuals with type 2 diabetes
demonstrate abnormalities in nerve conduction or small-fiber function, despite lacking classical
neuropathic symptoms [12]. These findings underscore that normal neurological examination or
symptom-based screening does not reliably exclude early nerve injury. Instead, functional
impairments such as reduced conduction velocity, altered thermal perception, or decreased
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intraepidermal nerve fiber density may already be present, reflecting early axonal and Schwann
cell dysfunction rather than irreversible structural loss.

Several clinical and biochemical factors have been consistently associated with this early
stage of nerve damage, including longer diabetes duration, reduced fasting C-peptide levels, and
the presence of albuminuria [12-14]. Collectively, these markers capture converging
pathophysiological pathways central to DPN development, namely chronic metabolic stress,
microvascular dysfunction, low-grade inflammation, and impaired neurotrophic support [15-17].
Prolonged diabetes duration reflects cumulative exposure to hyperglycemia-driven mechanisms
such as mitochondrial oxidative stress, activation of the polyol and hexosamine pathways, and
accumulation of advanced glycation end-products, all of which disrupt axonal transport and ion
channel function prior to overt axonal degeneration [16,18].

Reduced C-peptide levels may further accelerate subclinical neuropathy by removing its
protective actions on peripheral nerves. Experimental and clinical evidence suggests that C-
peptide supports endoneurial blood flow, preserves Na*/K*-ATPase activity, stabilizes neuronal
membranes, and attenuates inflammatory signaling. Deficiency in this peptide therefore
predisposes nerves to ischemic vulnerability and metabolic injury even in the absence of marked
hyperglycemia [19,20]. In parallel, albuminuria serves as a systemic marker of endothelial
dysfunction and microvascular injury, reinforcing the concept that early DPN is part of a broader
microangiopathic process linking renal, retinal, and neural tissues. Without timely management,
these subclinical abnormalities gradually extend from small sensory fibers to larger sensory and
motor fibers [18,21]. Therefore, early identification is critical as it provides a window for
intervention before permanent axonal loss occurs, highlighting the need for reliable screening
methods of subclinical DPN.

Conventional diagnostic approaches and their limitations
Several diagnostic modalities are currently available for the detection of subclinical DPN, where
their summaries are presented in Table 2. Conventional clinical examinations, such as
monofilament testing and vibration perception, are widely used but have limited sensitivity for
early or asymptomatic disease [22,23]. Nerve conduction studies remain the reference standard
for diagnosing large-fiber neuropathy, with high specificity. However, they have limited
sensitivity for early small-fiber involvement and require specialized equipment and trained
personnel [22,23]. The assessment is objective and is based on parameters such as nerve
conduction velocity, distal latency, and signal amplitude [22]. However, their sensitivity in
detecting subclinical DPN is limited, as early pathophysiological changes typically affect small
fibers before large fibers become involved [5]. Skin biopsy with intraepidermal nerve fiber density
assessment is considered the gold standard for small-fiber neuropathy and enables detection at
subclinical stages [24,25]. Nonetheless, the invasive nature of skin biopsy contributes to its
restricted routine use. Corneal confocal microscopy has emerged as a non-invasive imaging
technique capable of detecting early small-fiber loss, though its implementation is constrained by
equipment availability and technical expertise [26]. Collectively, these non—Al-assisted
modalities form the current diagnostic landscape for subclinical DPN, but each presents trade-
offs between accuracy, accessibility, and scalability, underscoring persistent gaps in early
detection [27]. Furthermore, those assessments are heavily dependent on patient responses and
examiner technique which can introduces potential bias and further limits reliability [28].

The subclinical stage of DPN represents a critical window during which neural injury may
still be reversible or its progression substantially attenuated. Evidence from the Diabetes Control
and Complications Trial (DCCT) showed that early neuropathic changes are modifiable through
metabolic intervention [29]. However, the ability to act within this window is constrained by the
limitations of existing diagnostic modalities. Conventional clinical examinations lack sensitivity
for early disease, while standard nerve conduction studies primarily capture large-fiber
dysfunction and may fail to detect early or predominantly small-fiber involvement [27]. Even
electrophysiological refinements designed to detect subtle distal conduction slowing are not
routinely applied and require specialized expertise for interpretation.
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Table 1. Search process and study selection criteria

Ttems Specification
Date of search July 28, 2025 until August 25, 2025
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Databases and other sources searched

Search terms used

Inclusion and exclusion criteria

Selection process

PubMed, Scopus, Web of Science, and Epistemonikos

“artificial intelligence” OR “machine learning” OR “deep learning” AND “diabetic neuropathy” OR “peripheral neuropathy” OR “subclinical
diabetic neuropathy” AND “early detection” OR “screening” OR “prediction”
Articles were included if they were published in English and focused on AI- or machine learning (ML)-based approaches for detecting
subclinical DPN among patients with diabetes mellitus (Type 1 or Type 2). Eligible studies encompassed the use of clinical,
electrophysiological, imaging, wearable, or biochemical datasets for model development or validation. Reviews, editorials, case reports, and

non-English publications were excluded.

Two reviewers screened the search results independently through titles and abstracts to select the eligible ones

Table 2. Non-artificial intelligence diagnostic modalities for detection of subclinical diabetic peripheral neuropathy

Diagnostic modality Primary nerve fiber ~ Typical diagnostic Skill/specialist requirement ~ Strengths Limitations
assessed performance®

Clinical examination Large fiber Low sensitivity for Primary care—level Simple, low cost, widely Insensitive to early neuropathy;

(monofilament, tuning fork) subclinical disease available subjective; poor signal granularity
for AT

Nerve conduction study Large fiber Sensitivity 40—-81%; Neurologist / trained Reference standard for Insensitive to early small-fiber

specificity 90—95% technician large-fiber neuropathy damage; time-consuming; limited

scalability

Point-of-care nerve Large fiber Sensitivity 80—96%; Minimal training Rapid, standardized Still misses pure small-fiber

conduction study (NCS) (such specificity 80—97% outputs; scalable neuropathy; population-specific

as sural nerve devices) cutoffs

Intraepidermal nerve fiber Small fiber Sensitivity 78—-88%; Specialist, pathology lab Gold standard for small- Invasive; sampling variability;

density (skin biopsy) specificity 64—90% fiber neuropathy poor acceptability; limited
repeatability

Quantitative sensory testing Small+large fiber Highly variable (AUC: Trained operator + Non-invasive; detects Psychophysical bias; attention-

(QST) 0.65-0.80) cooperative patient functional impairment dependent; noisy labels for AI

Contact heat evoked Small fiber (AS, C) Sensitivity 80%; Neurophysiology expertise ~ Objective cortical response;  Limited availability; complex

potentials (CHEPS) specificity 70% earlier than NCS acquisition; small datasets

Corneal confocal microscopy  Small fiber AUC 0.70-0.85 Ophthalmic imaging + Non-invasive; detects early ~ Equipment cost; normative

(parameter-dependent) software nerve loss; repeatable variability; image quality

dependence

Sudomotor function testing Small fiber (auto) Sensitivity 60%; Specialized lab Objective autonomic Time-consuming; variable

(QSART) specificity 100% assessment performance; limited adoption

Electrochemical skin Small fiber (auto) Moderate accuracy (AUC ~ Minimal training Rapid; point-of-care Influenced by hydration, skin

conductance 0.70—0.80) friendly condition; indirect nerve measure

*Data are proximate from different studies
Reference: [27]
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Current electrophysiological approaches tend to evaluate sensorimotor and autonomic
dysfunction separately, despite DPN being a condition involving multiple neural domains,
leading to incomplete characterization of early disease [30]. Al emerges as a promising approach
to address these diagnostic gaps by leveraging data already generated from conventional
diagnostic modalities. Using electrophysiological signals, imaging outputs, and functional test
results obtained from nerve conduction studies, corneal confocal microscopy, quantitative
sensory testing, and autonomic assessments, machine-learning algorithms can identify complex,
multivariate patterns that are not readily apparent through conventional threshold-based
interpretation [26,31].

Al approaches for early detection of subclinical DPN

Detection of subclinical DPN through AI models, in general, integrates early risk factors, subtle
neurophysiological abnormalities, and emerging functional changes that precede overt clinical
symptoms [32,33]. The following sections explain how classical machine learning models
leverage structured clinical and electrophysiological data, how deep learning approaches uncover
latent structural and waveform-level signatures from imaging and signal-based modalities, and
how wearable sensor—driven Al captures early functional impairments in real-world settings. The
role of explainable Al in translating these complex models into clinically interpretable tools was
further discussed. It is worth noting that most Al-based studies cited in the following sections
were designed to identify established or clinically manifest DPN rather than subclinical disease.
In this context, qualitative extrapolation was performed on the reported methodological
approaches and analytical performance to assess the feasibility of applying these models to the
identification of subclinical DPN. The summary of studies reporting AI- or machine learning-
based models, with feasible application to detect subclinical DPN is presented in Table 3.

Machine learning methods

Classical machine learning approaches, including logistic regression, random forests, support
vector machines, gradient boosting, and XGBoost, have been widely applied in the detection of
clinical DPN [2]. Features or variables incorporated in these models involved structured
demographic, clinical, metabolic, and laboratory data for neuropathy-related prediction tasks
[34-37]. Machine learning classification models typically use routinely available variables,
including age, sex, diabetes duration, body mass index, HbA1c, lipid profiles, renal markers, and
cardiovascular indicators; in some studies, electrophysiological or quantitative sensory testing
results are also incorporated [34-37]. Logistic regression is often employed as a baseline due to
its transparency and interpretability. Meanwhile, the performance often improved after
implementing ensemble-based methods such as random forests and gradient boosting
[34,36,37]. The ensemble-based methods are considered superior when handling nonlinear
relationships and interactions among heterogeneous risk factors [38, 39]. As reported previously,
Random Forest, XGBoost, and LightGBM classifiers could reach over 80% of accuracy when
detecting prediabetes [40].

Across studies, age and diabetes duration consistently emerged as the most influential
predictors, reflecting cumulative metabolic exposure and time-dependent neurodegenerative
processes that are insufficiently represented by short-term biochemical indices alone [34-37].
Glycemic control, commonly measured by HbA1c, contributed to model performance but showed
limited discriminative value when considered in isolation [41,42]. This is consistent with clinical
observations that neuropathy may develop despite apparently adequate glycemic control in
individuals with prolonged diabetes duration [43, 44]. In contrast, renal markers such as urine
albumin-to-creatinine ratio and serum creatinine were repeatedly selected as strong predictors
[45,46]. This is likely because they reflect shared microvascular and endothelial dysfunction
underlying both diabetic nephropathy and peripheral neuropathy [47]. Patterns showed by the
aforementioned studies suggests that systemic microvascular compromise may serve as a more
sensitive early signal of neuropathic risk than glycemic metrics alone [48,49].
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Table 3. Al-based study and applicability for subclinical diabetic peripheral neuropathy

Author, year (ref)

Al method

Input data

Neuropathy stage studied

Applicability for subclinical DPN

Zhang et al., 2023 [35]

Baskozos et al., 2022 [34]

Jiang et al., 2024 [36]

Wu et al., 2024 [37]

Wu et al., 2024 [37]

Williams et al., 2020

[50]
Qiao et al., 2024 [51]

Sartore et al., 2025 [10]

Random Forest (best); LR,
SVM, GBDT, XGBoost
Random Forest (best);
Adaptive Regression Splines;
Naive Bayes

Random Forest (best);
Logistic Regression + SHAP
XGBoost (best); Random
Forest; Logistic Regression +
SHAP

XGBoost (best); Random
Forest; Logistic Regression +
SHAP

CNN (U-Net; Liverpool Deep
Learning Algorithm)

U2Net (best); U-Net, U-
Net++, Deeplabv3+, SegNet

XGBoost-based risk
prediction algorithm
(MetaClinic)

PORH, LTH, TcPOz2 + clinical variables

Clinical, metabolic, QoL, psychological,
lifestyle variables

Clinical, laboratory, and TCM features

Demographic, clinical, and routine
laboratory data

Demographic, clinical, and routine
laboratory data

Corneal confocal microscopy images
Corneal confocal microscopy images

HbAu1c, glucose, BP, lipids, creatinine,
albuminuria

Clinical DPN

Clinical DPN (painful vs painless)

Clinical DPN

Clinical DPN

Clinical DPN

Clinical DPN (Toronto criteria)

Clinical DPN (Toronto criteria)

Asymptomatic T2D; DPN
assessed by biothesiometer

Variables can be measured in
subclinical stage
Multidimensional risk profiles in
subclinical stage

Early-risk profiling using routine
clinical data

Shared risk factors measurable before
overt neuropathy; based on routine
labs

Shared risk factors measurable before
overt neuropathy; based on routine
labs

Small-fibre pathology detectable before
clinical symptoms

Small-fiber changes occur early;
imaging markers measurable before
symptoms

Designed for pre-symptomatic risk
stratification; supports early screening
before clinical neuropathy

Al artificial intelligence; BMI: body mass index; BP: blood pressure; CNBD: corneal nerve branch density; CNFD: corneal nerve fiber density; CNFL: corneal nerve fiber length; CNN:
convolutional neural network; DPN: diabetic peripheral neuropathy; EQ-5D: EuroQol five-dimension questionnaire; GBDT: gradient boosting decision tree; HbA1c: glycated
hemoglobin; LR: logistic regression; LTH: local thermal hyperemia; PORH: post-occlusion reactive hyperemia; QoL: quality of life; SHAP: SHapley Additive exPlanations; SVM: support
vector machine; T2D: type 2 diabetes; TcPO2: transcutaneous oxygen pressure; TCM: traditional Chinese medicine; UACR: urine albumin-to-creatinine ratio; VPT: vibration perception
threshold; XGBoost: extreme gradient boosting.
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Several studies which used machine learning—based models also incorporated
cardiovascular and vascular-related variables, including blood pressure parameters and carotid
stenosis [10,47]. This suggests that macrovascular disease contributes to nerve ischemia and
impaired axonal repair and is captured by these models [52,53]. A model developed from
systematic review included hypertension, determined by blood pressure, could effectively
stratified patients to develop DPN [53]. In addition, patient-reported outcomes—particularly
reduced quality-of-life scores and psychological measures such as depression and anxiety—were
frequently ranked among important features [34]. These variables may capture early functional,
perceptual, and behavioral changes that precede formal neurological diagnosis and are not
readily detected by objective testing. In terms of the methods applicability for subclinical DPN
detection, these models are feasible primarily because of their reliance on routinely collected,
non-invasive variables [34-37].

Deep learning methods

As limitations of traditional machine learning classifiers in capturing high-dimensional and
spatially complex data became apparent, researchers increasingly shifted toward deep learning
architectures [54]. Al studies employing deep learning architectures have primarily focused on
imaging-based modalities [55,56]. Mostly, the images incorporated to the models are derived
from high-frequency peripheral nerve ultrasound and corneal confocal microscopy [50, 51, 53].
These modalities are capable to capture structural correlates of neuropathy that are not accessible
through routine clinical testing [50,51,53]. These modalities are particularly suited to early
neuropathy assessment because they interrogate small-fiber integrity and nerve
microarchitecture, which are affected earlier in the disease course than large-fiber conduction
parameters [31]. Convolutional neural networks and advanced segmentation models consistently
identified features such as nerve cross-sectional area, corneal nerve fiber length, density,
branching complexity, and fractal metrics, reflecting axonal loss, impaired regeneration, and
disruption of nerve network organization that may precede overt clinical symptoms [50,51,53].
An intriguing instance, as reported by a study, is that reductions in corneal nerve fiber length and
density capture diffuse axonal degeneration, whereas alterations in branching patterns and
fractal measures reflect loss of network complexity and regenerative capacity [57].

Further, deep learning and AI frameworks have also been applied to non-imaging data
sources to support early neuropathy risk assessment. An integrated AI risk-prediction model
evaluated asymptomatic individuals with type 2 diabetes using routinely available clinical and
biochemical variables, with neuropathy status benchmarked against vibration perception
threshold measured by biothesiometer [10]. This approach explicitly targets the pre-symptomatic
phase of disease and shifts the role of AI from direct structural detection toward probabilistic risk
stratification [58]. The prominence of variables such as age, disease duration, and metabolic
burden in these models reinforces convergence between imaging-based and non-imaging Al
approaches around shared pathophysiological drivers of early nerve injury [59,60]. The
integrated risk-prediction systems enable scalable screening in asymptomatic populations [10].
However, most deep learning models have been trained and validated in cohorts with clinically
manifest DPN, and their applicability to subclinical disease remains largely extrapolated.

Challenges and gaps in the literature

Unfortunately, the current evidence base for Al-assisted identification of subclinical DPN
remains constrained by several methodological and translational challenges [55]. Most studies
rely on small, single-center datasets without standardized acquisition protocols, limiting
generalizability and increasing the risk of overfitting. The problem is particularly concerning for
deep learning models that require large and diverse training data [61-63]. In addition, the absence
of a universally accepted definition of subclinical DPN results in heterogeneous diagnostic
thresholds, inclusion criteria, and outcome measures, complicating cross-study comparisons and
precluding the establishment of reliable benchmarks. Model validation is frequently retrospective
and confined to controlled research settings, raising concerns regarding robustness and
performance in real-world clinical practice, where early or mild neuropathic changes are often
underrepresented [64,65]. Data imbalance, in which early or subclinical DPN cases constitute a
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small minority relative to non-DPN samples, has been shown to reduce model sensitivity for
minority outcomes. The application of data-balancing techniques, such as the Synthetic Minority
Over-sampling Technique (SMOTE), has been associated with improved recall and F1-scores in
imbalanced disease classification tasks [66]. In addition, limited model interpretability
constrains clinician trust and clinical adoption, particularly in convolutional neural network—
based systems [42,55]. Finally, unresolved issues related to data governance and regulation. Their
integration into existing care pathways underscore persistent gaps between technical feasibility
and practical implementation [67].

Future directions

Future research should prioritize the development of multicenter, standardized datasets that
capture diverse patient populations and employ consistent diagnostic criteria for subclinical
DPN. Such datasets would improve reproducibility, enable benchmarking of algorithms, and
facilitate external validation. In parallel, explainable AI (XAI) techniques should be increasingly
applied to enhance transparency, allowing clinicians to understand which features drive
predictions and improving trust in automated systems [68,69]. Integration of AI with wearable
technologies and mobile health applications also holds significant promise. Continuous
monitoring of gait, plantar pressure, and other functional parameters could provide real-time
insights into neuropathic changes, enabling proactive interventions [70]. In this context,
wearable sensor—based point-of-care platforms can be used for such monitoring of early
neuropathic changes outside traditional clinical settings [30,71]. Further, longitudinal prediction
models should be developed to estimate individual risk trajectories over time, supporting
personalized diabetes management. Unfortunately, most of the reports on real-time monitoring
of DPN or other diabetic complications remain conceptual [72].

Explainable AT (XAT)

XAI techniques aim to address the lack of interpretability in complex models by making the
decision-making process more transparent and understandable to clinicians [73]. Methods such
as SHapley Additive exPlanations (SHAP), Local Interpretable Model-Agnostic Explanations
(LIME), and saliency maps can be used to highlight which features such as HbA1c levels, nerve
conduction parameters, or specific regions of an image can contribute most to the model’s
predictions [56,74]. For example, in a deep learning model trained on corneal confocal
microscopy (CCM) images, saliency maps can visually indicate the nerve fibers that drive the
classification decision, thereby aligning AI outputs with clinical intuition. Similarly, in
structured-data models, SHAP values can rank the most important predictors of subclinical
neuropathy, helping clinicians validate whether the model is consistent with established risk
factors. XAI not only improves clinician trust but also facilitates regulatory approval and ethical
deployment in practice [73].

Wearable and sensor-based Al

Wearable technologies and sensor-based AI approaches provide an innovative, non-invasive
avenue for detecting subclinical DPN by continuously monitoring functional outcomes such as
gait, balance, and plantar pressure distribution [30,71]. As suggested in non-diabetic contexts,
devices like accelerometers, inertial measurement units (IMUs), and pressure-sensitive insoles
can capture detailed spatiotemporal gait parameters and subtle deviations in walking patterns
that may reflect early sensory or motor nerve dysfunction [75,76]. For example, patients with
incipient neuropathy may demonstrate reduced stride variability, asymmetrical pressure
distribution across the foot, or impaired postural stability, all of which can be quantified through
wearable sensors [71]. Machine learning algorithms can be applied to these datasets to classify
patients at risk of DPN, expected outperforming traditional screening tools due to their sensitivity
to micro-level biomechanical changes. A key advantage of wearable-based models is their ability
to provide continuous, real-world data that reflect daily activity rather than isolated clinical
measurements [35]. To develop this emerging research area, the progress will depend on
interdisciplinary collaboration among clinicians, engineers, data scientists, and behavioral
researchers.
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Conclusion

Integration of Al is highly promising for the early identification of subclinical DPN, with the
potential to stratify high-risk individuals before irreversible nerve damage occurs. Across diverse
methodological approaches, existing studies report encouraging accuracy and sensitivity.
However, the evidence base remains fragmented by small sample sizes, heterogeneous definitions
of subclinical DPN, and limited validation in real-world settings. To enable meaningful clinical
translation, future research should prioritize large, standardized, and multicenter datasets, the
systematic incorporation of explainable AI frameworks, and rigorous prospective validation. If
these challenges are addressed, the integration of AI-driven models into routine diabetes care
may represent a transformative step toward earlier intervention and reduction of the long-term
burden of neuropathic complications.
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