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Abstract 
Mathematical modeling has become an indispensable tool in epidemiology, particularly in 

infectious disease transmission dynamics and public health decisions. Over the past 

decades, modeling methods have evolved from traditional approaches to AI-driven 

methods to offer better predictive measures and capability to process large, complex data. 

The coronavirus 19 (COVID-19) pandemic made a pivotal turn in the field, where almost 

half of the papers published in the study were written since the beginning of the COVID-

19 (2019–2025). The aim of this study was to explore mathematical modeling in 

epidemiology using bibliometric analysis. Metadata were retrieved from Scopus database 

and processed using VosViewer for network visualization analysis. A total of 11,032 papers 

were retrieved, where eight research clusters were found, covering topics from basic 

reproduction models, disease control covering tuberculosis & human immunodeficiency 

virus (HIV), vaccination, and most recently being the COVID-19 pandemic. Studies on 

mathematical modeling in epidemiology were most reported by authors from the United 

States (documents: 3689, citations: 181054), United Kingdom (documents: 1785, 

citations: 93842), and China (documents: 1089, citations: 29379). This study provides 

insight into current progress in epidemiological modeling and identifies less-explored 

topics that warrant further investigation to meet future global health challenges, including 

the development of robust, adaptive models that integrate artificial intelligence and deep 

learning for data-deficient settings. 

Keywords: Mathematical modeling, epidemiology, infectious disease, COVID-19, global 

health 

Introduction 

Mathematical modeling has been a crucial tool in understanding the dynamics of epidemiology, 

particularly infectious disease transmission, an important aspect in public health decisions and 

disease control strategies. A review article published in 2004 emphasized the critical importance 

of mathematical modeling in tracking the emergence and re-emergence of infectious diseases, 

highlighting how these models managed to respond to evolving microbial threats, for instance, 

HIV/AIDS, SARS, and influenza [1]. Early mathematical models were developed, as mentioned 

in previous study [2], establishing one of the foundational concepts of modeling, such as basic 

reproduction number, which helped determine whether a disease would spread or die out within 

a population. Over the years the models evolved, incorporating other parameters such as contact 

rates, vaccination coverage, and population mobility [3,4,5], all of which affect the disease 

transmission. Utilizations of mathematical modeling in epidemiology also involved the detailed 

frameworks to analyze these dynamics, using differential equations to model the existing changes 

in population compartments [6]. These early models were pivotal in managing infectious diseases 
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over the years, including influenza and HIV [7,8], leading to their importance in the context of 

emerging global health threats.  

Years after the development of the aforementioned early models, the advent of network-

based models brought a new level of sophistication and insight to predict the spread of diseases 

among populations. Pastor-Satorras & Vespignani became one of the first to introduce the 

concept of epidemic spreading in scale-free networks, indicating how disease transmission might 

accelerate through highly connected individuals in a population—a “hub” [9], and it was proven 

to be crucially relevant during the coronavirus 19 (COVID-19) pandemic, where a research article 

published on Science journal in 2020, demonstrated how undocumented infections and 

asymptomatic carriers facilitated the rapid spread of the virus on a global scale [10]. 

Mathematical models became an important aspect for policymakers, where they may offer 

important strategies for containment, testing, and vaccination [11]. The COVID-19 pandemic 

marked a massive shift in the increase of research in this field, where efforts were dedicated to 

further understanding and mitigating the spread of the SARS-CoV-2 virus.  

Recent years have also been an important step to further the technology in mathematical 

modeling, particularly for infectious disease transmission, where advancements in artificial 

intelligence, machine learning, and big data analysis have managed to greatly develop the model 

by refining predictions and improving real-time data analysis. The integration of AI-driven 

approaches managed to enable the rapid adaptation to different models to account for new 

variants or changing disease transmission patterns. Chae et al. in 2018 [12] discussed how deep 

learning models like deep neural network (DNN) and long-short term memory (LSTM) managed 

to outperform traditional models such as the autoregressive integrated moving average (ARIMA) 

in predicting infectious diseases, utilizing vast amounts of social media and environmental data 

to improve disease transmission forecasting [12].  

Despite having major development in recent years, the utilization of mathematical modeling 

in epidemiology requires further reviews in illustrating the current progress of this research field, 

therefore, this review paper exists to inform the readers on the research trend and landscape to 

help related researchers in designing future research. To achieve this, bibliometric approaches 

are employed to study the emerging topics of mathematical modeling in epidemiology. For 

instance, this study analyzes the research trend of COVID-19 pandemics, which was a relatively 

new and rapidly evolving topic by the year it was published, as well as other samples in essential 

oils and polymeric materials research trend [13,14]. Similar bibliometric approaches have also 

been applied to wastewater treatment microplastics, revealing key patterns and research trends 

within these specialized areas [15,16]. As the field continues to evolve, this study answer the 

following research questions: (1) How has the use of mathematical models in epidemiology 

evolved, particularly in response to its widespread application during the COVID-19 pandemic? 

(2) What are the key areas of focus for researchers using mathematical models to study infectious 

diseases? Are there any less explored subfields within the research theme that warrant further 

investigation in the future? 

Methods 
This study utilized Scopus database to retrieve relevant papers of mathematical modeling in 

epidemiology (Figure 1). The keywords inputted to the Scopus database search are as follows: 

("Mathematical Model" OR "Mathematical Modeling" OR "Math Model" OR "Math Modeling" 

OR "Mathematic Model" OR "Mathematics Model") AND ("Infectious Disease" OR "Epidemic 

Model" OR "Disease Spread" OR "Epidemiology" OR "Compartmental Model")”, which were then 

filtered based on their publication status, document types (original article, conference paper, 

review, short survey). Several irrelevant subject areas retrieved from the Scopus database were 

also filtered out such as Arts and Humanities, Earth and Planetary Science, Dentistry and others 

including undefined subjects. No year published restriction was applied for the data retrieval 

(1962–2025), with further observation conducted to compare the publications written before and 

after the COVID-19 pandemic. The exported data was carefully cross-checked to eliminate 

potential paper duplicates and titles irrelevant to the study. The retrieved database was finally 

exported as CSV (.csv) file and inputted on VosViewer 1.6.20 for visualization analysis purposes.  
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Figure 1. Flowchart of mathematical modeling in infectious diseases literature search and filtering 
process. 

Results 

Characteristics of identified papers on mathematical modeling in epidemiology  

A total of 11,032 papers consisted of original articles (n=9524; 86.3%), conference papers (n=761; 

6.9%), review papers (n=713; 6.5%), and other documents (n=34; 0.3%) studying mathematical 

modeling in epidemiology were retrieved on the Scopus database (Figure 2). There was a sharp 

increase in papers published since 2019, notably due to the beginning of COVID-19 pandemic, 

accumulating a total of 46.6% of the total papers published in the study as retrieved from the 

database. 

 
 

 

 

 

 

 

 

 

Figure 2. Publication trend of mathematical modeling in epidemiology studies. 

Medicine (n=4419; 40.05%), Mathematics (n=3797; 34.41%), Biochemistry, Genetics, and 

Molecular Biology (n=2282; 20.68%), and Agricultural and Biological Sciences (n=2027; 18.37%) 

were the most studied subject areas in relation to mathematical models and epidemiology  

Papers screened by document type, publication 
stage: 11,485 papers retrieved 

Papers screened by source type: 
11,327 papers retrieved 

Document type, publication 
stage exclusion (n=561) 

Subject areas exclusion 
(n=158) 

Final papers included: 
n=11,032 

Language exclusion (n=305) 

Papers screened by subject areas limitation: 
12,046 papers retrieved 

Subject areas exclusion 
(n=813) 

Initial Scopus search (12,859 papers retrieved) 
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(Table 1). Out of 11032 retrieved papers, only 14 out of 159 journals published more than 100 

papers of related study. 

Table 1. Top ten subject areas related to mathematical modeling in epidemiology 

No Subject area Number of papers 
1 Medicine 4,419 
2 Mathematics 3,797 
3 Biochemistry, genetics, and molecular biology 2,282 
4 Agricultural and biological sciences 2,027 
5 Immunology and microbiology 1,934 
6 Computer science 1,293 
7 Environmental science 1,115 
8 Engineering 1,058 
9 Multidisciplinary 841 
10 Physics and astronomy 755 

Top authors, organizations, countries, and funding sources  
The most prolific author, as per the data retrieved, was Anderson RM (n=64; 0.58%), followed by 

Nishiura H (n=60; 0.54%), Ferguson NM, and Abu-Raddad LJ (n=46, 0.42%). In regard to the 

most productive funding sources supporting the study, the National Institutes of Health ranked 

first (n=865; 7.84%), followed by the U.S. Department of Health and Human Services (n=661; 

5.99%), being the only two organizations to support more than 500 publications  

(Table 2).  

Table 2. Top ten funding sources for mathematical modeling in epidemiology study 

No Funding source Status Number of papers 
1 National institutes of health Government 865 
2 US department of health and human services Government 662 
3 National science foundation Government 466 
4 National natural science foundation of China Government 445 
5 European commission European union 314 
6 National institute of allergy and infectious diseases Government 298 
7 UK research and innovation Government 293 
8 Medical research council Government 286 
9 National institute of general medical sciences Government 248 
10 Ministry of science and technology of the people's 

Republic of China 
Government 209 

Top mathematical modeling in epidemiology articles based on citation 

There was a total of 389,090 citations for 11,032 papers, averaged 35.27 citations per paper and 

6079.53 citations per year (1962–2025). The most cited paper was written by Van Den Driessche 

P & Watmough J (2002) (Table 3) on the reproduction numbers in compartmental disease 

transmission models. The aforementioned paper was cited almost twice as many as the secondly 

cited paper written by Hethcote, H.W in 2000, reviewing the evolution and application of 

mathematical models in epidemiology. Seven papers exceeded 2000 citations, with only one 

originating before 2000. 

Table 3. Top ten most cited published articles on mathematical modeling in epidemiology 

Rank Title Author(s) Year of 
publication 

Times of 
citations 

Ref. 

1 Reproduction numbers and sub-
threshold endemic equilibria for 
compartmental models of disease 
transmission 

Van Den 
Driessche, P. & 
Watmough, J. 

2002 7,232 [2] 

2 Mathematics of infectious diseases Hethcote, H.W. 2000 4,845 [6] 

3 Epidemic spreading in scale-free 
networks 

Pastor-Satorras, 
R. & Vespignani, 
A. 

2001 4,750 [9] 

4 Substantial undocumented 
infection facilitates the rapid 
dissemination of novel coronavirus 
(SARS-CoV-2) 

Li, R. et al. 2020 2,399 [10] 
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Rank Title Author(s) Year of 
publication 

Times of 
citations 

Ref. 

5 Gut metagenome in European 
women with normal, impaired and 
diabetic glucose control 

Karlsson, F.H. 
et al. 

2013 2,358 [17] 

6 Global epidemiology of hepatitis C 
virus infection 

Shepard, C.W. 
et al. 

2005 2,327 [18] 

7 Population biology of infectious 
diseases: Part I 

Anderson, R.M. 
& May, R.M. 

1979 2,201 [19] 

8 Social contacts and mixing 
patterns relevant to the spread of 
infectious diseases 

Mossong, J. et 
al. 

2008 1,993 [20] 

9 From epidemiological synergy to 
public health policy and practice: 
The contribution of other sexually 
transmitted diseases to sexual 
transmission of HIV infection 

Fleming, D. T., 
& Wasserheit, J. 
N. 

1999 1,882 [21] 

10 Modeling and variable selection in 
epidemiologic analysis 

Greenland, S. 1989 1,841 [22] 

Results from co-authorship networking analysis 

The relationship between authors, including their affiliated institutions and countries, can be 

examined through network analysis of co-authored papers. This analysis can reveal collaboration 

patterns and identify key authors, institutions, and countries actively contributing to research on 

mathematical modeling of infectious diseases. The analysis can reveal collaboration trends and 

highlight key authors, institutions, and countries contributing to research on mathematical 

modeling of infectious diseases. Visualization maps were generated using VOSviewer, where 

nodes of varying sizes and colors represent authors, institutions, or countries within their 

respective clusters. These nodes are connected by lines indicating Link Strength (LS), which 

reflects the number of co-authored papers and the intensity of collaboration between two entities. 

Total Link Strength (TLS) is calculated by summing all links connected to a node, providing an 

overall measure of the strength of relationships among authors, institutions, or countries. 

The authors’ co-citation analysis was conducted with the following thresholds—minimum 

number of documents per author set at 10 and minimum number of citations per author set at 5. 

Of 34,478 detected authors from the retrieved data, 203 met the thresholds. The author with the 

highest number of citations was van den Driessche (citations: 8420; TLS: 405), followed closely 

by Anderson RM (citations: 8,167; TLS: 124). TLS did not correlate with citation counts, for 

instance, May RM (citations: 7,606; TLS: 5) was co-cited only in five papers. The density 

visualization of authors’ co-citation highlights key researchers in the field, with Hiroshi N, Roy 

MA, and Neil MF, among the most frequently cited (Figure 3). The red and yellow regions of the 

visualization indicated stronger co-citation networks among authors, indicating influential 

clusters of authors working on the study, with the authors in red regions being the most 

influential.  

Organization-based co-authorship analysis was conducted on 29,173 organizations or 

funding sources, also restricted with the same thresholds of a minimum five papers per 

organization and ten minimum citations requirements, in which 51 met the thresholds  

(Figure 4). The network visualization indicates how key organizations are involved in 

collaboration on the study, where the London School of Hygiene (Documents: 28; citations: 1057) 

and Tropical Medicine and Fogarty International Center (Documents: 11; citations: 1991) appear 

as central nodes, indicating how influential their published papers were.  

Lastly, country-based co-authorship analysis was carried out on 107 detected countries from 

the database, in which after being restricted to the same thresholds as previously applied, 95 

countries met the thresholds (Figure 5). The United States (documents: 3,689; citations: 

18,1054; TLS: 2,727), United Kingdom (documents: 1,785; citations: 93,842; TLS: 2,149), and 

China (documents: 1,089; citations: 29,379; TLS: 891) emerge as central nodes, which indicate 

their dominant roles in global research collaborations. Different colors of nodes also highlighted 

how often certain countries conducted research collaborations on the study, highlighting a 

localized research effort on continental aspect. 
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Figure 3. (A) Network visualization of authors’ co-citation (weights: documents). (B) Density 
visualization of authors’ co-citation (weights: documents). 
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Figure 4. (A) Network visualization of organizations’ co-authorship (weights: documents). (B) 
Density visualization of organizations’ co-authorship (weights: documents). 

Keyword co-occurrence analysis 

A keyword co-occurrence analysis was conducted to determine the frequency of connected terms 

among papers and to identify emerging trends within the research field. The network and density 

visualization maps represented each keyword as a node, where links between nodes indicated 

their co-occurrence in research publications. The size of each node and link varies, reflecting the 

one keyword's popularity and the strength of its association with other terms, generally a group 

of nodes of the same link would create clusters of research subthemes. 

A total of 17,173 keywords were identified, a minimum occurrence threshold of nine was 

applied (Figure 6). A total of 106 keywords met the threshold, with the most used keywords in 

the study on mathematical modeling in epidemiology were COVID-19 (occurrences: 1,043; TLS: 

2,188), Epidemiology (occurrences: 1,089; TLS: 1,908), and Mathematical Model (occurrences: 

1,089; TLS: 1,668).  The network visualization presented in Figure 6 indicated how these three 

keywords were the most influential keywords in the study. Notably, COVID-19 emerged as the 

dominant keyword, consistent with the publication surge post-2019. 

A 

B 

B 
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Figure 5. (A) Network visualization of countries’ co-authorship (weights: documents). (B) Density 
visualization of countries’ co-authorship (weights: documents). 

Research clusters were also formed among the keywords used in research study, with 

different colors as the difference. Each nodes’ color grouped these keywords based on the 

keywords’ closeness to a certain research subtheme of the study. The research clusters, according 

to the visualization, was presented in Table 4, with each cluster generally being close to a 

research trend. Density visualization of the keywords indicated how certain keywords played an 

important role in becoming the central figures of the research study, with the ones in red region 

being the most influential. 

A 
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Figure 6. (A) Network Visualization of keywords’ co-occurrences (weights: occurrences). (B) 
Density visualization of keywords’ co-occurrences (weights: occurrences). 

Table 4. Clusters of trending microalgal-bacterial research sub-topics 

Cluster (color) Keywords of interest Research trend 
Red (I) Epidemiology, public health, 

tuberculosis, HIV 
Mathematical modeling for disease control, 
public health surveillance 

Green (II) Basic reproduction number, stability 
analysis, optimal control 

Stability and control in epidemic models, 
optimization of public health strategies 

Mustard (III) SIR model, simulation, disease 
transmission 

Simulation and analysis of disease spread 
using SIR models 
 

Orange (IV) COVID-19, contact tracing, forecasting Real-time modeling for COVID-19 spread, 
contact tracing, and forecasting outbreaks 

A 

B 
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Cluster (color) Keywords of interest Research trend 
Blue (V) Disease ecology, population dynamics, 

transmission dynamics 
Mathematical approaches to disease 
dynamics, ecological modeling of disease 
spread 

Purple (VI) Parameter estimation, compartmental 
models, pharmacokinetics & 
pharmacodynamics 

Parameter estimation in epidemiological 
models, incorporation of pharmacokinetics 
in epidemic modeling 

Cyan (VII) Vaccination, immunology, 
hospitalization 

Modeling vaccination strategies, 
immunological responses, and 
hospitalization dynamics 

Brown (VIII) Ebola, Dynamical System Dynamical system approaches to Ebola 
virus spread, complex modeling of disease 
outbreaks 

Discussion 
The COVID-19 pandemic significantly reshaped the mathematical modeling study in 

epidemiology research, accelerating the study on the spread and control of infectious diseases. 

Mathematical models also evolved in adapting to technological advancement changes, such as the 

use of machine learning and artificial intelligence, demonstrating their significance over future 

potential rapid adaptation in times of crisis.  

Trends and shifts in the landscape of mathematical modeling in epidemiology studies were 

particularly rising following the onset of the COVID-19 pandemic. Out of 11,032 papers retrieved 

from the Scopus database, over 40% of the total papers were published from COVID-19 pandemic 

onwards (2019–2025). This dramatic increase emphasized the central role of mathematical 

modeling in addressing rising global health challenges, particularly in understanding the spread 

and control of infectious diseases. 

Advancements in technology also caused the emergence of machine learning and artificial 

intelligence (AI), particularly over the spread of infectious disease tracking. The incorporation of 

AI, machine learning and big data analytics managed to incorporate the traditional mathematical 

models, where these technologies were used to refine the accuracy of disease spread predictions. 

Studies integrating AI-driven methods such as deep neural networks (DNNs) and long short-term 

memory (LSTM) networks were found to outperform traditional mathematical methods, one of 

which being the autoregressive integrated moving average (ARIMA). With that regard, AI-driven 

methods managed to showcase the potential of modern technologies to help enhancing the speed 

and adaptability of disease models, particularly potential future global health outbreak like 

COVID-19. 

Geographic and institutional patterns also emerged. Among 107 countries, the United States, 

United Kingdom, and China were the only nations each publishing more than 1,000 papers. 

Institutionally, the London School of Hygiene & Tropical Medicine and the Fogarty International 

Center played central roles. Network visualizations indicated extensive collaboration across 

organizations to confront infectious-disease challenges using mathematical modeling. 

Keyword analysis confirmed the prominence of COVID-19 (the most frequent keyword) and 

revealed multiple research clusters. These clusters emphasize the need for real-time modeling to 

inform contact tracing, vaccination, and outbreak forecasting. Prior to COVID-19, models 

frequently focused on HIV and tuberculosis [23,24], emphasizing transmission dynamics and 

control strategies. As the field expanded during the pandemic, clusters around real-time 

modeling, contact tracing, and outbreak forecasting became prominent [25-27]. Susceptible–

infected–recovered (SIR) models remained a staple, with refinements that improved the 

prediction of infectious-disease trajectories [28]. 

Before the pandemic, mathematical modeling in epidemiology concentrated on foundational 

topics such as the basic reproduction number, vaccination strategies, and general transmission 

dynamics [2,29,30]—areas that remain essential for guiding control and mitigation. COVID-19 

further accelerated progress and raised questions about model choice (e.g., uncertainty around 

exit strategies requires more accurate prediction capability [31]). The incorporation of AI and 

machine learning has been crucial, given their ability to handle large, complex, high-dimensional 

data in real time [32,33]. However, model performance depends on data that are accurate and 

timely [34]; effectiveness is compromised when data are scarce, inaccurate, delayed, or unreliable 
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[35–38]. This reveals a critical gap: improved data-integration techniques that maintain model 

performance in data-deficient settings. Addressing this gap will require advances in data 

collection and fusion to enhance adaptability and deliver reliable predictions despite imperfect 

inputs. 

Finally, evidence in this bibliometric analysis necessarily reflects published research at the 

time of assessment; relevant studies may not yet be available. Moreover, our coverage is limited 

to Scopus-indexed publications. Nonetheless, bibliometric analysis remains a robust approach to 

characterize the current research landscape and to highlight directions for future work. 

Conclusion 
Mathematical modeling in epidemiology has expanded rapidly, especially since COVID-19, 

shaping infectious-disease management and public-health strategy. As the field evolves, 

traditional approaches must adapt to advances in AI and deep learning to enhance precision and 

predictive flexibility. Going forward, progress will depend on robust, adaptive models that 

perform reliably in data-deficient settings. 
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